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Abstract

In this article, a version of sequential mastery testing (i.e., classifying students

as a master/non-master or to continue testing and administering another item or testlet) is

studied where response behavior is modeled by a multidimensional item response theory (IRT)

model. First, a general theoretical framework is outlined that is based on a combination of

Bayesian sequential decision theory and multidimensional IRT. Then it is pointed out how

multidimensional IRT -based sequential mastery testing can be generalized to adaptive item-

and testlet-selection rules, that is, to the case where the choice of the next item or testlet to be

administered is optimized using the information from previous responses. Both compensatory

and conjunctive loss structures are considered. Simulation studies are used to evaluate (1) the

performance, in terms of average loss, of multidimensional IRT-based sequential mastery testing

as a function of the number of items administered per testing stage, (2) the effects on average

loss when turning the sequential procedure into an adaptive sequential procedure, (3) the impact

on average loss when the multidimensional structure is ignored and a unidimensional IRT model

is used in the decision procedure.

Key words: adaptive testing, Bayesian sequential decision theory, mastery testing,

item response theory, multidimensional item response theory.
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Introduction

In an adaptive mastery test (AMT), the decision is to classify a student as a master, a

non-master, or to continue testing and administering another item or testlet (i.e., items within

a batch that are strongly related). In the sequel, we will assume that another testlet rather than

another item is presented in case of continuing testing. Adaptive mastery tests are designed with

the goal of maximizing the probability of making correct classification decisions (i.e., declaring

mastery or non-mastery) while at the same time minimizing test length (Lewis & Sheehan,

1990). For instance, Lewis and Sheehan (1990) showed in a simulation study that average test

lengths could be reduced by half without sacrificing classification accuracy. In AMT, both the

stopping rule (i.e., termination criterion) and testlet selection mechanism are adaptive. In other

words, test takers with a low and high level of ability are classified as non-master and master,

respectively, whereas those with an intermediate level of ability are presented another testlet.

Furthermore, student's ability measured on a latent continuum is estimated after each response,

and the next testlet is selected such that its difficulty matches student's last ability estimate.

Doing so, able students can avoid doing too many easy items and less able students can avoid

being exposed to too many difficult items. An implicit assumption is that items have unequal

difficulty implying that the probability to answer an item correctly is not equal for all items

in the pool, that is, response behavior is modeled by an item response theory (IRT) model. In

case the termination criterion is determined using Bayesian sequential decision theory (e.g., De

Groot, 1970; Lehmann, 1986), Vos and Glas (2000) denote an AMT as an adaptive sequential

mastery test (ASMT), which combines the strong points of both approaches.

Three basic elements can be identified in Bayesian sequential decision theory. In

addition to a measurement model relating the probability of a correct response to student's

(unknown) ability and a loss function evaluating the total costs and benefits for each possible

combination of decision outcome and ability, cost of test administration (`cost per observation')

must be explicitly specified in this approach. Doing so, maximum expected losses associated

with the non-mastery and mastery decisions can now be calculated straightforward at each stage

of testing. As far as the maximum expected loss associated with continuing testing concerns,

this quantity is determined by averaging the maximum expected losses associated with each of

the possible future decision outcomes with weights equal to the probability of observing those

outcomes (i.e., the posterior predictive distributions). Optimal rules (i.e., Bayesian sequential

rules) are now obtained by minimizing the posterior expected losses associated with all possible

decision rules at each stage of testing using techniques of dynamic programming (i.e., backward
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induction). Backward induction starts by considering the final stage of testing (where no option

to continue testing is available) and then works backward to the first stage of testing. Decision

rules are hereby prescriptions specifying for each possible response pattern what decision (i.e.,

declare master/non-mastery or to continue testing) has to be taken. The Bayes principle assumes

that prior knowledge about student's ability is available and can be characterized by a probability

distribution called the prior. This prior probability represents our best prior beliefs concerning

student's ability, that is, before any testlet yet has been administered.

The impact of MT-based sequential mastery testing (SMT), that is, the next item to be

administered is randomly selected within the Bayesian sequential decision-theoretic framework,

and ASMT on average loss, proportion correct classification decisions, and proportion testlets

given was. investigated by Vos and Glas (2000) in a number of simulation studies using the

1PL as well as the 3PL testlet model. Two different dependence structures of testlet responses

were introduced for the 3PL testlet model. First, it was assumed that all item responses were

independent, given student's ability. Secondly, a hierarchical 1K!' model was used reflecting

a greater similarity of responses to items within than between testlets. For the loss structure

involved, a linear loss function was adopted implying that the distance between student's

ability and the cut- off point 0e, which is determined in advance by the decision-maker on the

underlying latent ability B using standard-setting techniques, is taken into account.

The results of the simulation studies indicated that the average loss in the SMT and

ASMT conditions decreased considerably compared to the fixed test condition, mainly due

to a significant decrease of testlets administered. The number of correct decisions remained

relatively stable. With the 3PL model, ASMT produced considerably better results than SMT,

while with the 1PL model the results of ASMT were only slightly better. When testlet response

behavior was simulated by a hierarchical HU model with within-person ability variance, average

loss increased. Ignoring the within-person variance in the decision procedure resulted in a

further inflation of losses. Across studies, the minimal variance criterion (i.e., maximizing the

expected reduction in the variance of the difference between the losses of the mastery and non-

mastery decision) and selection of testlets with maximum information near the cut-off point Oc

produced the best results, but the difference with the maximum information at the EAP estimate

of ability was very small.

The purpose of this article is to study a version of ASMT where response behavior

is modeled by a multidimensional 1PL testlet model. The loss structure involved will be

considered for both conjunctive (i.e., minimal requirements for each ability) and compensatory

(i.e., low performance on one ability can be compensated by high performance on another

6
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ability) testing strategies. The article concludes with a simulation study that aims on the gain

of an SMT over a fixed-length mastery test and, in turn, the gain of an ASMT over an SMT

using a multidimensional 1PL testlet model. As in Vos and Glas (2000), gain will be defined in

terms of average loss, the average number of testlets administered, and the percentage of correct

classification decisions.

Definition of the decision problem

In the following, it will be assumed that the variable-length mastery problem consists of

S (S > 1) stages labeled s = 1, S and at each stage a testlet can be administered. This testlet

consists of one or more items indexed with i and the observed item responses for a randomly

sampled student will be denoted by a discrete random variable Ui, with realization ui. Let the

vector of item responses u, be the response pattern to the s-th testlet. For s = 1, S the

decisions will be based on a statistic ws which is a function of the response patterns us, that is,

ws = f (ui, us). In many cases, ws will be the response pattern ul, ..., us itself. Howevgr,

below it will become clear that some computations are only feasible if the information of the

complete response pattern is aggregated. At each stage of testing s (s = 1, S 1) a decision

rule d(ws) can be defined as

m mastery decision
d(ws) = n non-mastery decision

c testing is continued. ..

(1)

At the final stage of testing, stage S, only the two mastery classification decisions m and n

are available. Mastery will be defined in terms of the latent proficiency continuum of the IRT

model.

Multidimensional IRT models

Multidimensional IRT models are IKT models for response behavior where the

responses depend on more than one latent ability. Multidimensional IRT models for

dichotomously scored items were first presented by McDonald (1967) and Lord and Novick

(1968). These authors use a normal ogive to describe the probability of a correct response.

McDonald (1967,1997) developed an estimation procedure based on an expression for the

association between pairs of items derived from a polynomial expansion of the normal ogive.

The procedure is implemented in NOHARM (Normal-Ogive Harmonic Analysis Robust
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Method, Fraser, 1988). An alternative approach using all information in the data, and therefore

labeled "Full Information Factor Analysis" was developed by Bock, Gibbons, and Muraki

(1988). This approach is a generalization of the marginal maximum likelihood (MML) and

Bayes modal estimation procedures for unidimensional IRT models (see, Bock & Aitkin, 1981,

Mislevy, 1986), and has been implemented in TESTFACT (Wilson, Wood, & Gibbons, 1991).

A Bayesian estimation procedure using a Markov Chain Monte Carlo (MCMC) technique has

been presented by Beguin and Glas (1998).

A comparable model using a logistic rather than a normal-ogive representation has

been studied by Andersen (1985), Glas (1992), Reckase (1985, 1997) and Ackerman (1996a

and 1996b). In the present article, the logistic version of the model will be used. In the logistic

version, the probability of a correct response is given by

exp(Eq aiq0q
P(Ui = n el, ..., 9Q, aii, ..., aic2, bi, ci) = G + (1 co.)]. exp(E bi) (2)

where 01, ..., 0c2 are ability parameters, a21, aiQ factor-loadings, bi the item difficulty and ci

the guessing parameter. The probability of a response pattern

p(u I a, b, c, p, E) = f p(u 10, a, b, e)g(0.I 12,E)d0, (3)

with p(u 10, a, b, c) the probability of a response pattern given 0, which is derived from (2)

using the assumption of local independence, and g(0 E) the Q-variate normal distribution.

Compensatory and Conjunctive-Disjunctive Loss Functions

In the framework of the analysis of dichotomous dominance data, Coombs and Kao

(1955, also see Coombs, 1960) make an important distinction between conjunctive-disjunctive

and compensatory multidimensional models. The IRT model discussed above is a compensatory

model because in determining the probability the ability dimensions are weighted with the factor

loadings. However, the distinction between conjunctive, disjunctive and compensatory relations

between latent variables and manifest variables can also be applied to define a loss structure.

Compensatory loss functions First an example of a compensatory loss structure will be given.

Consider two dimensions. Let 01,02 and Bic and 02c denote test taker's proficiency level and

some pre-specified cut-off points in the latent space, respectively. Consider a line in the two-

8
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dimensional proficiency space defined by A1(01 + A2(02 02c) = 0. This line divides

the latent space into two subspaces, persons with a proficiency in one subspace are masters, the

persons in the other subspace are non-masters. The loss function for the master and non-master

decision is given by

L(m, 01,02) = max{sC, sC + A1(01 01c) + A2(92 92c)} (4)

with Al, A2 < 0 and

L(n, 01, 02) = max{sC, sC + B1(01 + B2(02 02c)}, (5)

with B1, B2 > 0; C is the cost of delivering one testlet, sC is the cost of delivering s tests. To

ensure that B1(01 00 +B2(02 020 = 0 defines the same line as A1(01 01c)+A (0_2x 2-02c)

0, the additional constraint Ai /A2 = B1 /B2 is imposed. Notice that the loss structure is

compensatory in the sense that a proficiency below a cut-off score on one dimension can be

compensated by a proficiency above a cut-off score on the other dimension.

In Q dimensions, the loss function becomes

and

L(m, 0) = max{sC, sC + .A1(0 0c)} (6)

L(n, 0) = max{sC, sC + W(0 00}, (7)

where A and B are vectors of weights with all elements negative and positive, respectively,

and 0 and Oc are the ability vector and a vector of cut-off points, respectively. An additional

constraint is that A1(0 0c) = 0 and B1(0 0c) = 0 define the same (Q 1)-dimensional

linear sub-space.

Conjunctive loss functions In a conjunctive loss structure, a test taker is considered a master

if the proficiency is above a cut-off point on all dimensions, and is considered a non-master

if proficiency is below a cut-off point on any dimension. In two dimensions, this could be
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translated into the following loss-function. Define

sC + A1(01 + A2(02 02c)

SC + A2(02 02c) + A3(01 01002 1920
L M, 01, 02) sC + A1(01 01c) + A4(01 010(02 02c)

and

sC

if 01 < 01c and 02 < 02c
if 01 > 0ic and 02 < 02c
if 01 < 01, and 02 > 02c
if 01 > Oic and 02 > 02c

(8)

L(n, 01, 02) = {
sC + (01 010131(02 02c)B2 if 01 > eic and 02 > 02c
SC otherwise, (9)

for A1, A2, A3, A4 < 0 and B1, B2 > 0. Both loss functions are continuous, L(n, 01, 02) is

strictly positive and increasing on the space where L(m, 01, 02) is equal to sC, in the same

manner, L(m, 01, 02) is strictly positive and decreasing on the space where L(n, 01,02) is sC.

Notice that L(m, 01, 02) = sC + A1(01 Oic) on the line 02 = 02C, and L(m, 01, 02) =

A2(02 02c) on the line 01

Coombs and Kao (1955) show that conjunctive and disjunctive models are isomorph

and only one mathematical model needs to be developed for the analysis of the problem. In

the present case it is easily verified that choosing (8) as the definition for L(n, 01, 02) ,(9) for

the definition of L(m, 01, 02) and setting A1, A2, A3, A4 > 0 and B1, B2 < 0 defines the loss

structure for the disjunctive case.

At stage s, the decision whether the respondent is a master or a non-master, or whether

another testlet will be administered, is based on the expected losses of the three possible

decisions given the observation ws. The expected losses of the first two decisions are computed

as

and

E(L(m, 0) I w s) = f , ..., f L(m, 0)p(0 I ws)d0 (10)

E(L(n, 0) w3) = f , f L(n, 0)p(0 I w s)d0 , (11)

where p(0 I w3) is the posterior density of 0 given w3. The expected loss of the third

possible decision is computed as the expected risk of continuing testing. If the expected risk of

continuing testing is smaller than the expected loss of a master or a non-master decision, testing

will be continued. The expected risk of continuing testing is defined as follows.

10
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Let {w8+1 I w3} be the range of w9 +1 given w3. Then, for s = 1, S 1, the

expected risk of continuing testing is defined as

E(R(w.+1) I ws) = E mws+op(ws±i. ws), (12)

fwa+ilwal

where the so-called posterior predictive distribution p(w3+1 I w3) is given by

P(w s+1 I ws) = , , J P(Av 8+1 0)p(0 w s)d0,

and risk is inductively defined as

R(ws+i) = minIE(L(m, 0) I w8 +1),

E(L(n, 0) I ws+i), E(R(ws+2) ws-1:1)}.

The risk associated with the last testlet is defined as

R(w s) = min {E(L(m, 0) vas), E(L(n, 0) I ws) }.

(13)

(14)

(15)

So, given an observation w3, the expected distribution of Ws+1) Ws+2) WS is generated and

an inference about future decisions is made. Based on these inferences, the expected risk of

continuation (12) is computed and compared with the expected losses of a mastery or non-

mastery decision. If the risk of continuation is smaller than these two expected losses, testing

is continued. If this is not the case the classification decision with the smallest expected loss is

made.

Notice that the definitions (12) through (15) imply a recursive definition of the

expected risk of continuation. In practice, the computation of the expected risk .of continuing

testing can be done by backward induction as follows. First, the risk of the last testlet is

computed for all possible values of ws. Then the posterior predictive distribution p(ws I wsi)

is computed using (13), followed by the expected risk E(R(ws) ws_1) defined in (12). This,

in turn, can be used for computing the risk R(ws_i) for all ws_i using (14), and this iterative

process continues until s is reached and the decision can be made whether to administer testlet

s + 1, or to decide on mastery or non-mastery

11.
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The Compound Multidimensional Rasch model

The theory presented thus far is applicable to the broad class of multidimensional IRT

models defined above. The theory of adaptive sequential mastery testing will now be worked out

in detail for a special case of the general model. In this so-called compound multidimensional

Rasch model (Glas, 1992), it is assumed that the complete test, or, in the present case, the

complete testlet, consists of Q sub-tests, where every sub-test relates to a specific ability 0q,

q = 1, ..., Q. Further, it is assumed that the ensemble of person parameters 01, ..., 0Q has a

Q-variate normal distribution with a mean equal to zero and a covariance matrix E.

Given 01, ..., 0Q, the probability of a response pattern u1, ug is given by

P(111, 11Q I 01, °Q )

Q Kg
exp(uqi(o, bqi))

1111 1 + exp(Oq bqi)
q=1 i=1

Q

= H exp(too exp(_,00pqo(0,),
q=1

where bq= (biq, bocji is a vector of item parameters, u'qbq is the inner product of u and tq,

tq = Et ug, is the sum score, and

K g

PO(9 q) = 11(1 + exp(0q bqi))-1.
i=i

(17)

Notice that tq is the minimal sufficient statistic for 0q. Further, it is easily verified that Pq0(0q)

is the probability, given 0q, of a response pattern with all item responses equal to zero. The

probability of observing tq given 0q is given by

p(tq I = E p(ug 0q)

{ugit,}

E exp(to, uigkop,o(90
{ uq It }

= rytq (bq) exp(40q)Pq0(0q),

with -yt, (bq) an elementary symmetric function defined by

ryt, (bq) = > exp(u'qbq),
fugitql

12



Adaptive Sequential Mastery Testing - 10

and where {ug I tq} stands for the set of all possible response patterns resulting in a sum score

tq.

by

Given 9 = (01, ..., 0p), the probability of a response pattern u = (u1, uQ) is given

Q

p(u 0) = exp(to, exp(-14b0P0(0q)
q=1

= exp(e0) exp(u13)P0(0),

where b = (b1, bQ) is a vector of item parameters, t = (t1, tc2) and

Q

P0(0) = Hp q0(0 .

q=1

The probability of observing t given 9 is given by

p(t 10) = rt (b) exp(t10)P0(9)

with rt (b) is a product of the elementary symmetric functions -yt, (bq) for q = 1, ..., Q. Below,

rt (b) will be referred to as a compound elementary symmetric flinction.

Usually the prior 9 is standard normal, so let g(0 I E) be the normal density with mean

zero and covariance matrix E. Then

P(0 I t) = p(t i 9)g(0 I E) exp(tiO)P0(0)g(0 I E)
p(t) f exp(vo)Pomo I E)d9

Notice that Pt (b) cancels from the nominator and denominator.

Applying the general framework of the previous section to the Rasch model boils down

to choosing the minimal sufficient statistics for 0, that is, the unweighted sum scores for the

statistics %vs. So let tsq be the score pattern on the q-th sub-test for the s-th occasion. Further,

define r8 as a Q-vector with elements rsq = Eds=i tdq. Let p(9 I r3) stand for the posterior

density of proficiency given r8. Then the expected losses (10), (11) and the expected risk (12)

can be written as E(L(m,0) I r3), E(L(n,9) I rs) and E(R(rs+i) I .rs). More specifically, the

13
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expected risk is given by

E(R(rs+i) r3) = E p(ra+1 I rs)R(r8+1), (18)
r8+11r,

where the summation is over all scores rs+i compatible with r3. Defining zs+i= r3+1r3, the

posterior predictive distribution (13) specializes to

P(r8-1-1 I rs) = f , f p(r8+1 0)P(0 I r8)d6

..7 exp(zs +10),.(3±1)(0) p(0 I rs)d0 , (19)

where Fz, is a shorthand notation for a compound elementary symmetric function of the item

parameters of occasions s+1 and Po(8±1)(0) is equal to (17) evaluated using the item parameters

of test s + 1. That is, Po(s+1)(0) is equal to the probability of a zero response pattern on test

s + 1, given 0.

Simulation studies

A simulation study was designed to investigate the following four research questions.

(1) What is the performance, in terms of average loss, of multidimensional IRT-based sequential

mastery testing as a function of the number of items administered per testing stage? (2) What

are the effects on average loss when turning the sequential procedure into an adaptive sequential

procedure? (3) How is average loss in the sequential procedure influenced when ignoring the

multidimensional structure and using a unidimensional IRT model? And finally, (4) how does

ignoring the multidimensional structure affect the adaptive sequential procedure in terms of

average loss?

Compensatory loss functions For all simulations pertaining to compensatory loss functions, a

three-dimensional compound Rasch model was used. The parameters of the loss function were

(A1, A2, A3) = (-1, -1, -1) and (B1, B2, B3) = (1, 1, 1), while the cost of administering one

item was set equal to 0.02. The cut-off point was set equal to 0, = 0.

In the studies, the following aspects were varied:

The correlation between the latent dimensions. The three-dimensional compound Rasch

model was simulated in two conditions: a high-homogenity condition were the correlation

14
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between all three dimensions was p = 0.80 and a low-homogenity condition were this cor-

relation was p = 0.40.

The test administration design. In the test procedure 27 items could be delivered. These

items could be delivered as a fixed test of 27 items, or in a sequential design with 3 stages

with 9 items per stage, 9 stages of 3 items, and 27 stages of one item.

The test administration mode. Test administration could be either sequential or adaptive se-

quential. For the sequential procedure, the item difficulties bi were drawn from a standard

normal distribution. Further, the items were evenly distributed over the three ability dimen-

sions, that is, a third of the items loaded on the first dimension, a third on the second, and a

third on the third dimension. Finally, also within a stage the items were evenly distributed

over the three dimensions, with the exception of the one-item stages, were items alternately

loaded on a dimension. The item parameters were redrawn in every replication. For the adap-

tive sequential mode, a testlet bank was generated in such a way that it could be expected

that it supported selection of testlets with differential optimal measurement properties. For

the design of 27 stages of one items each, this was simply translated into drawing 375 item

difficulties for each ability dimension from the standard normal distribution and choosing

the optimal item via a selection, criterium that will be outlined below. For the procedures

with 3 and 9 stages, the following procedure was adopted:

define the grid {h} = {hi, h2, h3} =- {h(i), h(k)Ii, j, k = 1, ..., 5, h(n) = 1.0 +

0.5(n 1)}. Notice that this grid has 53, that is 125 points.

for each point h E {h}, draw 3 item difficulties from the multivariate normal distribution

defined by ,Ai(h,0.2I). Each item is assumed to load on a different dimension. This is

repeated 3 times for each point h E {h}. For the procedure with 3 stages, the 9 items

form one testlet, for the procedure with 9 stages, three testlets of 3 items are formed.

In this manner the total number of items available for the three procedures (27, 9 and 3

stages) remains constant, that is, equal to 1125.

Also for the adaptive mode, the item difficulties were redrawn in every replication.

The choice of a criterium for adaptive testlet selection in a multidimensional framework is more

complicated that in a unidimensional framework. In the latter framework, Vos and Glas (2000)

studied three selection criteria. The first two entailed the choice of the testlet with maximum

information at the cut-off point and at the expected-a-posteriori estimate of ability, respectively.

In the multi-dimensional framework, these two criteria are less plausible. In one dimension,

both the running estimate of ability and the cut-off point are on the same continuum, and any

test with high information between these two points will be informative forthe decision that has

15
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to be taken. In a multidimensional framework, the test taker's ability is a point in Q-dimensional

space and the boundary between masters and non-masters becomes a line in two dimensions, or

a linear manifold in more than two dimensions. Therefore, in this case the relation between the

position of the test taker in the support of the loss function and the optimal testletwill be much

more complicated, and remains a point of further study.

As an alternative, the third criterion studied by Vos and Glas (2000) will be used. This

approach is motivated by the fact that one is primarily interested in minimizing possible losses

due to misclassifications.. The sequential procedure is based on comparing L(m, 0) and L(n, 0)

to come to a decision. If, for every possible follow-up testlet s 1, the observation w8 +.1

is available, a natural choice for the follow-up test is the testlet were the posterior variance

of the difference between L(m, 0) and L(n, 0), say var(L(m, 0) L(n, 0) I w8+1), was

minimal. However, the observation w8 4.1 is not yet available, so a prediction must be made of

the likelihood of ws+1. This likelihood is obtained via the predictive distribution p(w8 +1 I w8).

So if fw,±11w81 is the set of all possible values w8+1 given ws, the criterion for selection of

the next testlet becomes

Evar(L(m, 0) L(n, 0) w8 +1)p(w8 +1 w3), (20)

{w.+11v/.1

that is, a testlet is chosen such that the expected variance of the difference between the losses

of the mastery and non-mastery decision is minimal. In the study on the unidimensional case

by Vos and Glas (2000) the performance of the three selection criteria was comparable, with a

slight advantage for the procedure based on maximum information at the cut-off point.

Insert Table 1 and 2 about here

The results for the simulation studies for p = 0.80 and p = 0.40 are reported in

Table 1 and Table 2, respectively. The results shown are a result of 1000 replications. For

every replication a true ability 0 was drawn from the standard normal distribution. At the

end of every replication, loss was computed using the true ability value. In Table 1, it can

be seen that the mean loss decreased with the number of items in a testlet. This decrease can

be attributed to a decrease in the number of items given. The proportion of correct decisions

did not decrease, in fact, it slightly increased. Finally, it can be seen that using an adaptive

testlet selection procedure further decreased mean loss, but this decrease was far less important
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than the decrease attributable to decrease of the testlet size. These findings are analogous to the

findings of Vos and Glas (2000) for the unidimensional case.

The results for the study in the condition with p = 0.40 are shown in Table 2. It can

be seen that the results are analogous to the results in Table 1, with the exception that all mean

losses are systematically larger than in the condition where p = 0.80. This is explained by the

fact that in the case of a homogeneous item pool, item responses are informative with respect to

all ability dimensions, while in the heterogenous case, item responses are mainly informative

with respect to the ability on which they load.

Insert Table 3 and 4 about here

In Table 3 and Table 4, the results are given for the conditions where the

multidimensional ability structure is ignored in the computations supporting the sequential

and adaptive sequential procedure. In this condition, response behavior was generated and

the final mean losses were computed using the 'true' item and 'true' multidimensional ability

parameters, while the computations supporting the sequential and adaptive sequentialprocedure

were made using a standard unidimensional Rasch model with the 'true' item difficulties b2

and unidimensional standard normally distributed ability parameters. One could view this

unidimensional approximation of multidimensional response behavior as an approximation

based on the assumption that the correlation between the latent abilities is equal, to one, i.e.,

p = 1.0. Therefore, in the unidimensional case, the losses (6) and (7) were computed using

01 = 02 = 03 = 0, where 0 has a standard normal prior, and 0,1 = 0c2 = Bc3 = Oc = 0. The

results for the condition with p = 0.80 are shown in Table 3, the results for the condition with

p = 0.40 are shown in Table 4.

It can be seen that, in general, the mean losses were higher than the analogous losses in

Table 1 and 2, but the increase of the loss remained limited. Therefore, it must be concluded that

the unidimensional approximation based on the assumption p = 1.0 worked quite well. Further,

one might expect that the approximation in the case where p = 0.40 would be worse, but this

expectation was not confirmed by the results. An important exception was the case of adaptive

testlet selection with 27 testlets of one item each. In that case, the average loss for the adaptive

sequential procedure became higher than the average loss in the non-adaptive sequential testlet

selection procedure. So there the combination of a unidimensional approximation of ability with

the circumstance that the testlets only loaded on one ability dimension resulted in a relatively

poor performance.
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Conjunctive loss functions For all simulations pertaining to conjunctive loss functions, a two-

dimensional compound Rasch model was used. The parameters of the loss function A1, A4

were all equal to 0.5,and the paparmeters B1 and B2 wire both equal to 1. The cost of

administering one item was set equal to 0.01 and the cut-off point was set equal to Oc = 0.

In the studies, the following aspects were varied:

The correlation between the latent dimensions: p = 0.80 and p = 0.40.

The test administration design. In the test procedure 32 items could be delivered. These

items could be delivered as a fixed test of 32 items, or in a sequential design with 4 stages

with 8 items per stage, 8 stages of 4 items, and 32 stages of one item.

The test administration mode: sequential or adaptive sequential. For the sequential pro-

cedure, the item difficulties bi were drawn from a standard normal distribution. Further,

the items were evenly distributed over the two ability dimensions, that is, half of the items

loaded on the first dimension and half loaded on the second dimension. Finally, also within

a stage the items were evenly distributed over the two dimensions, with the exception of the

one-item stages, were items alternately loaded on a dimension. The item parameters were

redrawn in every replication. For the adaptive sequential mode, a testlet bank was generated

in such a way that it could be expected that it supported selection of testlets with differential

optimal measurement properties. For the design of 32 stages of one items each, this was

simply translated into drawing 100 item difficulties for each ability dimension from the stan-

dard normal distribution and choosing the optimal item via a selection criterium that will be

outlined below. For the procedures with 32, 8 and 4 stages, the following procedure was

adopted:

define the grid {It} = {hi, h2} = {h(i), h(j)li, j = 1, ..., 5, h(n) = 1.0+0.5(n-1)}.
Notice that this grid has 52, that is 25 points.

for each point h E {h}, draw 2 item difficulties from the multivariate normal distribution

defined by Jr(h,0.21). Each item is assumed to load on a different dimension. This is

repeated 4 times for each point h E {h}. For the procedure with 4 stages, the 8 items

form one testlet, for the procedure with 8 stages, two testlets of 4 items are formed. In

this manner the total number of items available for the two procedures (32, 8 and 4 stages)

remains constant, that is, equal to 200.

Also for the adaptive mode, the item difficulties were redrawn in every replication.

Insert Table 5 to 8 about here
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Contrary to the unidimensional approximation of the compensatory model, the

unidimensional approximation does not work well for the conjunctive model. The reason for

the poor performance for the unidimensional approximation of the two-dimensional conjunctive

model is that there are many non-masters in the region { Oi > Oic and 02 < 02c} and { 91 < Oic

and 02 > 02c } that still obtain a sum score to make them eligible for a mastery decision in

the unidimensional approximation through a compensatory process where a low ability and

a low sum score on one dimension is compensated by a high ability and sum score on the

other dimension. This can be seen in Table 9, where the proportion of wrongly identified non-

masters is much higher than the proportion of non-masters wrongly identified. Notice that

this proportion is negatively related to the correlation. In the compensatory model, the error-

proportions are symmetric and approximately equal to 0.10.

Insert Table 9 about here

Conclusions and Further Research

In this article, a general theoretical framework for non-adaptive and adaptive sequential

testing based on a combination of Bayesian sequential decision theory and multidimensional

IRT was presented. This framework was applied to the compound Rasch model. In this model

it is assumed that the test items can be split up into a number of subsets related to specific ability

dimensions and the relation between the dimensions is modeled by a covariance structure. Using

this model, a number of simulation studies were performed which showed that augmentation

of the number of stages in a sequential mastery procedure resulted in a marked decrease of

average loss. Moving to adaptive sequential mastery testing further reduced average loss,

but the effect was far less important than the effect of a non-adaptive sequential procedure.

For the compensatory model, the results of the simulation studies showed that ignoring the

multidimensional structure and using a unidimensional approximation to the multi-dimensional

model did not generally result in an important increase in average losses. An exception was

adaptive sequential testing with only one item per testlet and a low correlation of the ability

dimensions. In that case, the average loss was higher that in the analogous case without adaptive

item selection. For the conjunctive model, the unidimensional appfoximation was very poor.

For application of the general framework for non-adaptive and adaptive sequential

testing presented here to more general multidimensional IRT models, two important issues will
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require further research. Firstly, the computation of the multiple integrals is done using Gauss-

Hermite quadrature, which becomes very time-consuming when more than three dimensions

are involved (see, for instance, Glas, 1992). Therefore, problems of higher dimensionality

will need simulation methods for the evaluation of the multiple integrals. Secondly, many

multidimensional IRT models, like, for instance, the "Full Information Factor Analysis" model

by Bock, Gibbons, and Muraki (1988) have no sufficient statistics for 0, and will need

alternative choices for ws = f (ui, 1.13). For the unidimensional 3PL model, Vos and Glas

(2000) show that using unweighted sum scores results in a feasible procedure that produces

acceptable results. A generalization to a multi-dimensional framework would probably be based

on a Q-dimensional vector of partial sum scores, but this remains a point of further study.
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Table 1
Relation between selection method and loss

compensatory model, p = 0.80

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 27 Fixed Test 0.81 1.00 0.7079
3 9 Sequential 0.79 0.38 0.4443
3 9 Adaptive 0.79 0.27 0.3777
9 3 Sequential 0.78 0.25 0.3972
9 3 Adaptive 0.78 0.25 0.3408
27 1 Sequential 0.79 0.25 0.3446
27 1 Adaptive 0.80 0.22 0.3060
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Table 2
Relation between selection method and loss

compensatory model, p = 0.40

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 27 Fixed Test 0.77 1.00 0.7654
3 9 Sequential 0.72 0.38 0.5387
3 9 Adaptive 0.73 0.26 0.4696
9 3 Sequential 0.73 0.25 0.4652
9 3 Adaptive 0.73 0.22 0.4169

27 1 Sequential 0.73 0.22 0.4109
27 1 Adaptive 0.73 0.21 0.3988
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Table 3
Relation between selection method and loss

when multidimensionality is ignored
compensatory model, p = 0.80

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 27 Fixed lest 0.81 1.00 0.6985
3 9 Sequential 0.81 0.41 0.4248
3 9 Adaptive 0.81 0.43 0.4138
9 3 Sequential 0.77 0.28 0.4074
9 3 Adaptive 0.80 0.27 0.3457

27 1 Sequential 0.80 0.27 0.3721
27 1 Adaptive 0.80 0.24 0.3295
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Table 4
Relation between selection method and loss

when multidimensionality is ignored
compensatory model, p = 0.40

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 27 Fixed Test 0.76 1.00 0.8200
3 9 Sequential 0.73 0.40 0.5781
3 9 Adaptive 0.73 0.43 0.5017
9 3 Sequential 0.70 0.29 0.4838
9 3 Adaptive 0.75 0.27 0.4484

27 1 Sequential 0.76 0.27 0.4023
27 1 Adaptive 0.71 0.23. 0.4429
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Table 5
Relation between selection method and loss

conjunctive model, p = 0.80

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 32 Fixed Test 0.85 1.00 0.3549
4 8 Sequential 0.82 0.30 0.1475
4 8 Adaptive 0.80 0.26 0.1396
8 4 Sequential 0.78 0.22 0.1306
8 4 Adaptive 0.80 0.21 0.1302

32 1 Sequential 0.79 0.20 0.1277
32 1 Adaptive 0.80 0.20 0.1270



Adaptive Sequential Mastery Testing - 25

Table 6
Relation between selection method and loss

conjunctive model, p = 0.40

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Thst lets
Given

Mean
Loss

1 32 Fixed Test 0.80 1.00 0.3999
4 8 Sequential 0.81 0.30 0.1765
4 8 Adaptive 0.81 0.24 0.1588
8 4 Sequential 0.81 0.23 0.1570
8 4 Adaptive 0.82 0.20 0.1377

32 1 Sequential 0.80 0.19 0.1375
32 1 Adaptive 0.81 0.19 0.1373
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Table 7
Relation between selection method and loss

when multidimensionality is ignored
conjunctive model, p = 0.80

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 32 Fixed Test 0.47 1.00 0.6208
4 8 Sequential 0.46 0.30 0.4581
8 4 Sequential 0.49 0.24 0.4247

32 1 Sequential 0.49 0.28 0.4340
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Table 8
Relation between selection method and loss

when multidimensionality is ignored
conjunctive model, p = 0.40

Number
of

Test lets

Items
per

Test let
Selection
Method

Proportion
Correct

Decisions

Proportion
Test lets
Given

Mean
Loss

1 32 Fixed Test 0.41 1.00 0.6523
4 8 Sequential 0.43 0.31 0.5040
8 4 Sequential 0.41 0.25 0.5136

32 1 Sequential 0.44 0.29 0.4878
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Table 9
Pattern of correct and incorrect decisions for

unidimensional approximation of conjunctive model

Correlation
0.40

State
Mastery
Non-mastery
Total

0.80
State
Mastery
Non-mastery
Total

Decision
Mastery Non-mastery

0.23 0.08
0.51 0.18
0.74 0.26

Decision
Mastery Non-mastery

0.29 0.10
0.43 0.18
0.72 0.28

Total
0.31
0.69
1.00

Total
0.39
0.61
1.00
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